



## Lec. 8

# Pharmacologic Management of Patient Behavior

## DRUGS AND AGENTS USED FOR SEDATION

### Hydroxyzine (Atarax, Vistaril)

Antihistamine with weak sedative, anticholinergic, and antiemetic properties. It produces sedation by inhibiting the hypothalamic H-1 histamine receptors involved in governing the sleep-wake cycle in humans.

In normal doses, it has no cardiovascular or respiratory depressant effects. Absorption through the gastrointestinal tract is relatively rapid, with the onset of action occurring in 15 to 30 minutes. Peak levels occur at 2 hours.

Recovery is slow by modern standards, reflected by the mean half-life of 3 hours. It is available in two forms, hydroxyzine hydrochloride (Atarax) and hydroxyzine pamoate (Vistaril).

Administration is preferably by the oral route; intramuscular injection must be deep in a large muscle mass. The drug should not be injected subcutaneously or intravenously because of potential tissue necrosis and hemolysis.

**Preparation:** tablets, elixir

**Dosage:** 0.5 to 1.0 mg/kg

Also available as IM inj. 1mg/kg

**Side effects:** prolonged drowsiness, ataxia, dry mouth.

In children, paradoxical reactions may occur at sedative doses.

## BENZODIAZEPINE AGONISTS AND ANTAGONISTS:

### Midazolam (Versed)

It is a water-soluble type of benzodiazepine. The clinical potency of midazolam is estimated to be 2 to 5 times the potency of diazepam. Onset of action 3-5 minutes after IV administration and recovery take place in 2-6 hrs.

The elimination half-time of midazolam is 1 to 4 hours, which is significantly shorter than that of diazepam. Cognitive testing in adults shows return of normal mental function within 4 hours.

### Adverse drug reaction

Respiratory depression dose, defendant risk of apnea, more often when used with narcotics, Hypertension has also been reported when used in combination.

**Preparation:** syrup, parenteral injection solution.

**Pediatric dose:** 0.05 - 0.1 mg/kg (IV. IM.)

0.03 – 0.75 mg/kg orally

0.4 - 1 mg/kg rectally

0.2 -0.3 mg/kg nasally



**Note:** Flumazenil should be available in the emergency drug kit as it is a direct, specific reversal agent used in clinical practice to treat benzodiazepine overdose (reverse sedation).

## SEDATIVE-HYPNOTICS

### Barbiturate

Can produce all levels of CNS depression, ranging from mild sedation to general anesthesia and deep coma. Their use is of very limited value for pediatric patients.

### Chloral Hydrate

Chloral hydrate is an aldehyde compound that is metabolized in the liver. It is a chemical irritant to the skin and mucous membranes and is associated with a high rate of nausea and vomiting, particularly when administered on an empty stomach, so it should be diluted in a flavored vehicle.

After oral administration, the drug was characterized by a slow onset time (30 to 60 minutes) and had a duration of action of 4 to 8 hours, with an elimination half-life of 8 to 11 hours.

Children given chloral hydrate would often enter a period of disinhibition resulting in excitement and irritability before reaching a level of clinically useful sedation.

The drug causes prolonged drowsiness or sleep and respiratory depression. In large dose it produces general anesthesia. Large doses sensitize the myocardium to the effects that resulting in arrhythmias, and thus should be avoided in patients with cardiac disease.

The lethal dose of chloral hydrate is stated to be 10 g in adults, yet ingestion of 4 g has been associated with a fatal outcome.

Because the drug dose not reliably produce sedation of a degree to permit operative procedures at lower doses, there is tendency to push the dosage higher to achieve the necessary sedation. With such a wide range of reported toxicity, this drug may be an unwise choice for many pediatric patients. It is recommended that young children receive not more than 1 g as a total dose.

- *Chloral hydrate is no longer available commercially in the United States.*
- *Risks are increased when it is accompanied with nitrous oxide, narcotics or local anesthetic agents.*

**Dosage:** 25-50 mg/kg to a maximum of 1 g

**Supplied:** oral capsules 500 mg

**Oral solution:** 250 and 500 mg/5ml

**Rectal suppositories:** 324 and 648 mg.

## Narcotics

### Demerol (Meperidine)

Meperidine is a synthetic opiate agonist, closely related to fentanyl in chemical structure. It is water-soluble but is incompatible with many other drugs in solution. Meperidine may be administered through either enteral or parenteral administration; however, oral administration is



only about half as effective as intramuscular injection. It is rapidly and well absorbed from the GI tract, reaching peak effect in about 60 minutes. Approximately 90% of an oral dose undergoes biotransformation via first-pass metabolism to normeperidine and meperidinic acid. Normeperidine is an active metabolite with approximately 50% of the analgesic activity as the parent compound, and manifests an elimination half-life of 15 to 40 hours.

- *Normeperidine also possesses CNS stimulation and can become proconvulsant with prolonged accumulation of the metabolite. Its use is contraindicated in patients with a history of hepatic disease, renal disease or dysfunction, or seizure disorders.*

**Supplied:** oral tablets—50 and 100 mg; oral syrup—50 mg /5 mL;

**parenteral solution**—25, 50, 75, and 100 mg/mL

**Dosage:** oral, subcutaneous, or intramuscular—1.0 to 2.2 mg/kg, not to exceed 100 mg when given alone or 50 mg when in combination with other CNS depressants.

**Note:** Overdose or rapid administration can lead to respiratory depression, apnea, rigidity and bradycardia; if these remain untreated, respiratory arrest, circulatory depression or cardiac arrest may occur.

## Nitrous oxide N2O

It is the most frequently inhalation agent used in pediatric sedation. Nitrous oxide is a slightly sweet-smelling, colorless, heavier than air, and inert gas. It is compressed in metal cylinders as a liquid that vaporizes on release. The gas is nonflammable but will support combustion. Very potent analgesic but weak anesthetic. It is absorbed quickly from the alveoli of the lungs and is physically dissolved in the blood with no chemical combination anywhere in the body. It is carried in the serum portion of the blood and excreted through the lungs without any biotransformation, small amount may be found in the body fluids and intestinal gas.

### OBJECTIVES

The objectives of nitrous oxide sedation, as stated by the American Academy of Pediatric Dentistry, include the following:

- Reducing or eliminating anxiety
- Reducing untoward movement and reaction to dental treatment
- Enhancing communication and patient cooperation
- Raising the pain threshold
- Increasing tolerance for longer appointments
- Aiding in the treatment of a patient with mental and/or physical disabilities or a medically compromised patient
- Reducing gagging
- Potentiating the effects of sedatives.



### **Disadvantages of nitrous oxide–oxygen inhalation may include:**

- Lack of potency
- Dependence on psychological reassurance
- Interference of the nasal hood with injection to the anterior maxillary region
- Need for the patient to be able to breathe through the nose
- Nitrous oxide pollution and potential occupational exposure health hazards.

### **Action (Pharmacodynamics) of N<sub>2</sub>O**

- Create an altered state of awareness without impairment to the motor function and it is a CNS depressant.
- Increase the respiratory rate and decrease the tidal volume.
- Cardiac output is decreased and peripheral vascular resistance is increased (important in the cardiac patients).
- Rapid induction and reversal may induce vomiting.

### **Absorption, metabolism and excretion**

Onset: Anywhere from a few seconds up to 3-5 minutes

Crosses the blood-brain barrier rapidly.

Enter the blood by crossing the pulmonary epithelium and depends upon the concentration gradient. During early phases of administration, the brain, heart, liver and kidney absorbs the major portion of N<sub>2</sub>O from blood.

### **Elimination**

- ✓ Rapid elimination
- ✓ Unchanged with exhalation from the lungs so (Do not hold a child close to your face while they are “waking up”)
- ✓ No significant metabolism by the liver or kidneys
- ✓ Not stored in the tissues

### **Requirements of the equipment used for the induction of N<sub>2</sub>O:**

1. Should have a continuous flow design with flow meters capable of accurate regulation.
2. Automatic shut down if the O<sub>2</sub> level falls < 20 %.
3. Flush level for easy and immediate flushing of the system with 100% O<sub>2</sub>.
4. Can be either mobile units or operating from a central supply to a wall mounted with mobile head.
5. Good and efficient scavenger system.
6. Nasal hood should be of adequate size for adults and children.



### Preparation of Patient

- Patient in reclined position
- Use TSD
- Describe sensations in advance

### Four Plateaus of Analgesia with N<sub>2</sub>O (Stages of Sedation):

1. Tingling sensation (Paresthesia - tingling of hands, feet).
2. Followed by a warm feeling (Vasomotor - warm sensations).
3. Feeling of well-being, hearing may dissolve into electronic throbbing. (Drift - euphoria, pupils centrally fixed sensation of floating).
4. Sleepiness, Nausea sets in, dream can occur (Dream - eyes closed but will open in response to questions, difficulty in speaking, jaw sags open).

### Techniques

The acceptance of the nosepiece by the patient is very important in the procedure for effective conscious sedation. If the patient exhibits resistance, then this method is not advisable for such a child.

#### 1- Slow induction technique

The bag is filled with 100% oxygen and delivered to the patient for 1 or 2 minutes at an appropriate flow rate, typically between 4 and 6 L/min. With an appropriate flow rate, movement covering one quarter to one half of the breathing bag should be observed with each inhalation and exhalation. With too high a flow rate, the bag will be overinflated, movement will not be seen with each breath, and leakage will occur from around the mask. In this instance, the flow rate should be adjusted downward. Too low a flow rate will deplete the bag of mixed gases. Once the proper flow rate is achieved, the nitrous oxide can be introduced by slowly increasing the concentration in increments of 10% to 20% until the desired level is achieved.

After stabilization of the nose piece, 100% O<sub>2</sub> is delivered for 3-5 min, then N<sub>2</sub>O level is increased slowly to 30-35% for 3-5 min (induction period) during this period the dentist should continuously communicate with the child to promote relaxation and reinforce cooperative behavior. If the child is older, he can be asked for the physical changes like tingling sensation in the fingers and toes.

The eyes will take a distance gaze with sagging of eyelids, most of the dentists prefer to increase the level of N<sub>2</sub>O to 50% for 3-5 min to provide the maximum effect for the administration of L.A. Concentration more than 50% is contraindicated in dental practice, after administration of L.A. the concentration can be brought down to 30-35 %.

#### After the treatment:

- ❖ Inhalation of 100% O<sub>2</sub> for not less than 5 min should be continued to allow diffusion of nitrogen from the venous blood into the alveoli, which will be then exhaled as N<sub>2</sub>O through



the respiratory tract and also allow the patient to return to the pretreatment activities, with any incident inadequate oxygenation may produce: nausea, headedness or dizziness.

- ❖ The child should be kept in supine position or in his side to maintain air way patency. Upon arriving home, the child should be placed on his side and observed carefully for the first hour and if he wishes to sleep, he can be allowed to do so.

## **2- Rapid induction technique**

Initiation is done by administration of equal parts of N<sub>2</sub>O and O<sub>2</sub> for 10-15 min, this is followed by maintenance phase where N<sub>2</sub>O is reduced by half for 40 min, the withdrawal is done by administration of O<sub>2</sub> only which is used to prevent anoxia that may result when N<sub>2</sub>O is used alone.

## **Common problems associated with N<sub>2</sub>O**

**1- Sleep:** Patient may go into sleep during the procedure and frequent arousal or communication is required.

**2- Air way obstruction:** Frequent repositioning of the head is needed to hyper extend the mandible so that the tongue is brought forward.

**3- Vomiting:** It could be due to:

- ✓ Over dose of N<sub>2</sub>O
- ✓ Prolonged administration of N<sub>2</sub>O
- ✓ Pre-existing GIT infection or influenza
- ✓ History of motion sickness or vomiting (use antiemetic drugs)

**This (vomiting) can be prevented by:**

- (1) Using min. effective concentration.
- (2) Avoid prolong procedure.
- (3) Empty stomach inhalation.
- (4) Slow return to upright position.
- (5) Aspiration is unlikely.

- ❖ So just ask the patient, to vomit in a chair side emesis basin if there is vomiting.

**4- Diffusion Hypoxia:** Since N<sub>2</sub>O has a lower blood solubility, it rapidly diffuse into the alveoli and dilutes the alveoli air causing fall in the partial pressure of the oxygen in the alveoli, to avoid this 100% O<sub>2</sub> for 10 min.

**5- Increased N<sub>2</sub>O concentration:** This should be avoided otherwise pressure will be created in the air filled body cavities especially in the middle ear.

**6- Hallucinations:** This can occur when we give high concentration of N<sub>2</sub>O (> 60 %) so reduce the dosage of N<sub>2</sub>O.



## Chronic Exposure to N<sub>2</sub>O

“Long-term (chronic) exposure to nitrous oxide in sufficient concentrations can produce irreversible, toxic changes, and should be a concern for dental personnel working in environments in which nitrous oxide is administered to patients.”

**Chronic exposure may cause disorders in the:**

- Respiratory system
- Hematological
- Immunological
- Liver
- Kidney
- Neurological such as loss of concentration, numbness and paresthesia, ataxia, loss of bladder control, loss of bowel sphincter control

**Controlling N<sub>2</sub>O in the operatory:**

- ✓ To minimize the risk of chronic exposure:
- ✓ Good scavenging system
- ✓ Adequate circulation of the room air
- ✓ Limiting of speech and mouth breathing by the patient
- ✓ Choose the proper size of the nasal hood.

**Note:**

Nitrous oxide is not a substitute for the traditional behavior management technique and it should be considered an adjunct to aid in the management of mild to moderate anxious child who is capable to cooperate in the dental chair.

## General anesthesia (Hospital Based Dentistry)

The use of general anesthesia for dental care in children is sometimes necessary for safe, efficient, and effective care. All available management techniques, including acceptable restraints and sedation, should be considered before the decision is made to use a general anesthetic.

***Patients for whom general anesthesia has been the management technique of choice include the following:***

1. Patients unable to cooperate due to a lack of psychological or emotional maturity and/or those who have a physical, mental, or medically compromising disability that precludes conscious sedation.
2. Patients with dental restorative or surgical needs for whom local anesthesia is ineffective because of acute infection, anatomic variations, or allergy.



3. The extremely uncooperative, fearful, anxious, physically resistant, or uncommunicative child or adolescent with substantial dental needs for whom there is no expectation that the behavior will soon improve.
4. Patients who have sustained extensive orofacial or dental trauma and/or require significant surgical procedures.
5. Patients requiring immediate, extensive comprehensive oral or dental needs.
6. Patients requiring dental care for whom the use of general anesthesia may protect the developing psyche and/or reduce medical risks.

If the benefits of the procedure outweigh the risk of anesthesia, there are few if any contraindications to general anesthesia. However, when a concern about the medical condition exists, consultation with an anesthesiologist would be desirable. Patients for whom general anesthesia is usually contraindicated include those with a medical contraindication to general anesthesia and healthy and cooperative patients with minimal dental needs.

#### **Advantages of Hospital Dentistry:**

- 1- No need for multiple visits.
- 2- All the treatments can be accomplished in 1 to 1.5 h.
- 3-Full mouth rehabilitation can be achieved under ideal circumstances.

#### **Disadvantages:**

- 1- Does not help in behavior management.
- 2- Does not teach the child about dentistry.
- 3- Risks of G.A.
- 4- Need to bring own staff and supplies.
- 5- Need to close office.
- 6- Expensive.

#### **Four stages of anesthesia:**

- 1- Analgesia: Pt. is conscious, reflexes are intact.
- 2- Delirium
- 3- Surgical anesthesia
- 4- Respiratory paralysis

\*\*Pt. unconscious in stage 2, 3 and 4

#### **Ways to minimize the negative effects of G.A. on child and parents:**

- (1) Involving the child in the operating room tour,
- (2) Allowing the child to bring along a favorite doll or toy,
- (3) Giving pre-induction sedation,
- (4) Providing a nonthreatening environment, thorough explanation of the procedure to the parents, mothers receiving G.A. were more stressed.



- (5) Giving post-procedure sedation as needed,
- (6) Allowing parents to rejoin their children as early as possible in the recovery area.

**Requirements of hospital set up for dental treatment:**

- 1- Well-equipped dental unit.
- 2- Experience, understanding hospital staff.
- 3- Availability of adequate operating room time and patient's beds.
- 4- Readily available pediatrician.
- 5- Close proximity to the dentist's private office.